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Abstract. Thispaper reviewseconometricmethods fordynamicpaneldatamodels,
and presents examples that illustrate the use of these procedures. The focus is on
panelswhere a large number of individuals or firms are observed for a small number
of time periods, typical of applications with microeconomic data. The emphasis is
on single equation models with autoregressive dynamics and explanatory variables
that are not strictly exogenous, and hence on the Generalised Method of Moments
estimators that are widely used in this context. Two examples using firm-level
panels are discussed in detail: a simple autoregressive model for investment rates;
and a basic production function.
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1 Introduction

Panel data is now widely used to estimate dynamic econometric models. Its advan-
tage over cross-section data in this context is obvious: we cannot estimate dynamic
models from observations at a single point in time, and it is rare for single cross-
section surveys to provide sufficient information about earlier time periods for
dynamic relationships to be investigated. Its advantages over aggregate time se-
ries data include the possibility that underlying microeconomic dynamics may be
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Frank Windmeijer and other participants at the Cemmap/ESRC Econometric Study Group workshop
in London on 22 February 2002 for detailed comments on an earlier draft. Financial support from the
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obscured by aggregation biases,1 and the scope that panel data offers to investi-
gate heterogeneity in adjustment dynamics between different types of individuals,
household or firms. Whilst these advantages are shared by repeated cross-section
or cohort data, from which pseudo-panel data on grouped observations can be con-
structed,2 genuine panel data - with repeated observations on thesameindividuals -
will typically allowmore of the variation in themicro data to be used in constructing
parameter estimates, as well as permitting the use of relatively simple econometric
techniques.

Dynamic models are of interest in a wide range of economic applications, in-
cluding Euler equations for household consumption, adjustment cost models for
firms’ factor demands, and empirical models of economic growth. Even when co-
efficients on lagged dependent variables are not of direct interest, allowing for dy-
namics in the underlying processmay be crucial for recovering consistent estimates
of other parameters. An example occurs in the estimation of production functions
when productivity shocks are serially correlated and relative factor inputs respond
to these shocks; this is discussed further in Section 3 below.

The focus in this paper will be on the estimation of single equation, autore-
gressive-distributed lag models from panels with a large number of cross-section
units, each observed for a small number of time periods. This situation is typical
of micro panel data on individuals or firms, and calls for estimation methods that
do not require the time dimension to become large in order to obtain consistent
parameter estimates. Assumptions about the properties of initial conditions also
play an important role in this setting, since the influence of the initial observations
on each subsequent observation cannot safely be ignored when the time dimension
is short. We also focus on methods that can be used in the absence of any strictly
exogenous explanatory variables or instruments, and that extend easily to models
with predetermined or endogenous explanatory variables. Strict exogeneity rules
out any feedback fromcurrent or past shocks to current values of the variable, which
is often not a natural restriction in the context of economic models relating several
jointly determined outcomes, such as consumption and income or investment and
Tobin’s q. Identification then depends on limited serial correlation in the error term
of the equation, which leads to a convenient and widely used class of Generalised
Method of Moments (GMM) estimators for this type of dynamic panel data model.

Rigorous surveys of these estimators can be found in, for example, Arellano and
Honore (2001) or Blundell, Bond and Windmeijer (2000). The emphasis here will
be on an intuitive review of these methods, intended to give the applied researcher
an appreciation for when it may be reasonable to use particular GMM estimators,
and how this can be evaluated in practice. This will be illustrated in the context
of two empirical examples. The first uses panel data on UK firms to estimate a
simple autoregressive model for company investment rates. The second uses panel
data on US firms to estimate a basic production function specification. An obvious
difference between these two examples is that the former illustrates the use of
these methods to estimate a univariate dynamic model, whilst the latter considers

1 See, for example, Nickell (1986).
2 See, for example,Verbeek (1996).
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a model with additional explanatory variables. A more subtle difference is that the
output and input series used in the production function context are near unit root
series, whilst the investment rates - which are basically growth rates in the capital
stock - are not. Whilst the time series properties of the series are not crucial for the
asymptotic distribution theory in this setting, where the number of cross-section
units is assumed to become large with the number of time periods treated as fixed,
they can nevertheless be crucial for the identification of parameters of interest
and for the finite sample properties of particular GMM estimators. Specifically,
estimators which rely on first-differencing or related transformations to eliminate
unobserved individual-specific effects, and then use lagged values of endogenous
or predetermined variables as instruments for subsequent first-differences, can be
expected to perform poorly in situations where the series are close to being random
walks, so that their first-differences are close to being innovations, and will not
identify parameters of interest in some limiting cases.

Section 2 discusses the estimation of simple autoregressive models and illus-
trates the use of these first-differenced GMMmethods in a setting where this iden-
tification problem does not arise. Section 3 discusses the use of additional moment
conditions that typically require stronger assumptions on the initial conditions,
but which can be highly informative in cases where identification using the first-
differenced equations alone becomes weak. This is illustrated in a multivariate
context. Section 4 concludes.

2 Autoregressive models

In this section we focus on estimation methods for the simpleAR(1)model

yit = αyi,t−1 + (ηi + vit); |α| < 1; i = 1, 2, . . . , N ; t = 2, 3, . . . , T (2.1)

whereyit is an observation on some series for individuali in periodt, yi,t−1 is the
observation on the sameseries for the same individual in thepreviousperiod,ηi is an
unobserved individual-specific time-invariant effect which allows for heterogeneity
in the means of theyit series across individuals, andvit is a disturbance term. A
key assumption wemaintain throughout is that the disturbancesvit are independent
across individuals. The number of individuals for which data is available(N) is
assumed to be large whilst the number of time periods for which data is available
(T ) is assumed to be small, and asymptotic properties are considered asN becomes
large withT fixed.3

We treat the individual effects(ηi) as being stochastic, which here implies that
they are necessarily correlated with the lagged dependent variableyi,t−1 unless
the distribution of theηi is degenerate. Initially we further assume that the distur-
bances(vit) are serially uncorrelated. These jointly imply that the Ordinary Least
Squares (OLS) estimator ofα in the levels equations (2.1) is inconsistent, since the

3 In this context it is straightforward to allow for time-specific effects, common to all individuals,
simply by including period-specific intercepts in the specification, or by transforming the series into
deviations from period-specific means (i.e. the mean across all individuals for a particular time period).
We simplify our discussion by not dealing explicitly with this case.
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explanatory variableyi,t−1 is positively correlated with the error term(ηi + vit)
due to the presence of the individual effects, and this correlation does not vanish as
the number of individuals in the sample gets larger.4 Standard results for omitted
variable bias indicate that, at least in large samples, the OLS levels estimator is
biased upwards.

The Within Groups estimator eliminates this source of inconsistency by trans-
forming the equation to eliminateηi. Specifically the mean values ofyit, yi,t−1,
ηi andvit across theT − 1 observations for each individuali are obtained, and
the original observations are expressed as deviations from these individual means.
OLS is then used to estimate these transformed equations. Since the mean of the
time-invariantηi is itself ηi, these individual effects are removed from the trans-
formed equations. However, for panels where the number of time periods available
is small, this transformation induces a non-negligible correlation between the trans-
formed lagged dependent variable and the transformed error term. The transformed
lagged dependent variable isyi,t−1 − 1

T−1 (yi1 + . . .+ yit + . . .+ yi,T−1) whilst
the transformed error term isvit− 1

T−1 (vi2 + . . .+ vi,t−1 + . . .+ viT ). The com-
ponent−yit

T−1 in the former is correlated withvit in the latter, and the component
−vi,t−1

T−1 in the latter is correlated withyi,t−1 in the former. These leading cor-
relations, which are both negative, dominate positive correlations between other
components such as−vi,t−1

T−1 and−yi,t−1
T−1 , so that the correlation between the trans-

formed lagged dependent variable and the transformed error term can be shown to
be negative.5 This correlation does not vanish as the number of individuals in the
sample increases, so that the Within Groups estimator is also inconsistent here.6

Standard results for omitted variables bias indicate that, at least in large samples,
the Within Groups estimator is biased downwards.7

The fact that these two estimators are likely to be biased in opposite directions
is useful. Thus wemight hope that a candidate consistent estimator will lie between
theOLSandWithinGroups estimates, or at least not be significantly higher than the
former or significantly lower than the latter. In caseswhere theAR(1)model seems
well specifiedand this pattern is not observed,wemight suspect either inconsistency
or severe finite sample bias for the supposedly consistent estimator, and go on to
consider more rigorous testing to investigate if this is indeed the case.8

4 Nor does this correlation vanish as the number of time periods increases, so that OLS levels remains
inconsistent for panels with largeT .
5 See Nickell (1981).
6 However the contribution of each time period to the individual means becomes negligibly small

as the number of time periods gets larger. Consequently this correlation induced by the transformation
vanishes, and the Within Groups estimator is consistent in the case of largeT panels.
7 The lagged dependent variable in theAR(1)model (2.1) is an example of an explanatory variable

that is predetermined with respect to the disturbances(vit), but not strictly exogenous in the sense of
being uncorrelated with all past, present and future values of these disturbances. The Within Groups
estimator, which introduces all realisations of thevit series into the transformed error term, is only
consistent in largeN , fixedT panels if all the right-hand side variables are strictly exogenous.
8 In caseswhere theAR(1)model does not seemwell specified, a similar indicationmay be available

by considering the sum of the estimated coefficients on the lagged values of the dependent variable in
higher-order autoregressive models. For example, in theAR(2)modelyit = α1yi,t−1 +α2yi,t−2 +
(ηi + vit), we can compare OLS levels and Within Groups estimates of(α1 + α2).
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Maximum Likelihood estimators for theAR(1) panel data model have been
developed, but an awkward feature of dynamic models in shortT panels is that the
distribution ofyit for t = 2, 3, . . . , T depends in a non-negligible way on what is
assumed about the distribution of the initial conditionsyi1. In specifying the model
(2.1) we have not restricted the process that generates these initial conditions, and
a wide variety of alternative processes could be considered. For example theyi1
may be stochastic or non-stochastic, correlated or uncorrelated with the individual
effectsηi, specified such that the mean of theyit series for individuali takes a
stationary value (ηi

1−α ) for each observationt = 1, 2, . . . , T , or to satisfy higher
order stationarity properties. Different assumptions about the nature of the initial
conditions will lead to different likelihood functions, and the resulting Maximum
Likelihoodestimators ofα canbe inconsistentwhen this initial conditionsprocess is
mis-specified. Interested readersare referred toHsiao (1986) for furtherdiscussion.9

Instrumental Variables estimators which require much weaker assumptions
about the initial conditions have therefore been attractive in this context. The basic
first-differenced Two Stage Least Squares (2SLS) estimator for theAR(1) panel
datamodel was proposed by Anderson andHsiao (1981, 1982), initially as a way of
obtaining a consistent starting value for computation of Maximum Likelihood esti-
mators. The first-differencing transformation also eliminates the individual effects
ηi from the model

∆yit = α∆yi,t−1 +∆vit; |α| < 1; i = 1, 2, . . . , N ; t = 3, 4, . . . , T (2.2)

where∆yit = yit − yi,t−1. An important difference from the Within transforma-
tion, however, is that first-differencing does not introduce all realisations of the
disturbances(vi2, vi3, . . . , viT ) into the error term of the transformed equation for
period t. The dependence of∆vit on vi,t−1 implies that OLS estimates ofα in
the first-differenced model are inconsistent, with the direction of the inconsistency
being downward and typically greater than that found for the Within Groups esti-
mator.10 However consistent estimates ofα can now be obtained using 2SLS with
instrumental variables that are both correlatedwith∆yi,t−1 and orthogonal to∆vit.

The only assumption required on the initial conditionsyi1 is that they are un-
correlated with the subsequent disturbancesvit for t = 2, 3, . . . , T , in which case
the initial conditions are said to be predetermined. The correlation betweenyi1 and
the individual effectsηi is left unrestricted, and there is no requirement for any sta-
tionarity condition to be satisfied. Together with the previous assumption that the
disturbancesvit are serially uncorrelated, predetermined initial conditions imply
that the lagged levelyi,t−2 will be uncorrelated with∆vit and thus available as an

9 Blundell and Smith (1991) develop a class of maximum likelihood estimators which avoid this
fragility by conditioning on the initial observations in the sample. Binder, Hsiao and Pesaran (2000)
present maximum likelihood estimators which allow the possibility ofα = 1 and hence can be con-
sidered for unit root testing, although specific assumptions about the initial conditions are still required
in theα < 1 case. Both these approaches can be extended to vector autoregressive models, although
not, so far as I am aware, to models where the process for additional explanatory (x) variables is not
specified.
10 The transformations, and hence the corresponding OLS estimators, coincide in the special case
whenT = 3.
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instrumental variable for the first-differencedequations in (2.2). The resulting 2SLS
estimator is consistent in largeN , fixedT panels, and identifies the autoregressive
parameterα provided at least 3 time series observations are available (T � 3).11

Additional instruments are available when the panel has more than 3 time se-
ries observations. Whilstyi1 is the only instrument that can be used in the first-
differenced equation for periodt = 3, bothyi1 andyi2 can be used in the first-
differenced equation for periodt = 4, and the vector(yi1, yi2, . . . , yi,T−2) can be
used in the first-differenced equation for periodt = T . Since the model is overi-
dentified withT > 3, and the first-differenced error term∆vit has a first-order
moving average form of serial correlation if the maintained assumption that thevit

are serially uncorrelated is correct, 2SLS is not asymptotically efficient even if the
complete set of available instruments is used for each equation and the disturbances
vit are homoskedastic. The Generalised Method of Moments (GMM), developed
by Hansen (1982), provides a convenient framework for obtaining asymptotically
efficient estimators in this context, and first-differenced GMM estimators for the
AR(1) panel datamodel were developed byHoltz-Eakin, Newey andRosen (1988)
and Arellano and Bond (1991). Essentially these use an instrument matrix of the
form

Zi =


yi1 0 0 . . . 0 . . . 0
0 yi1 yi2 . . . 0 . . . 0
. . . . . . . . . . .
0 0 0 . . . yi1 . . . yi,T−2

 , (2.3)

where rows correspond to the first-differenced equations for periodst= 3, 4, . . . ,T
for individual i, and exploit the moment conditions

E [Z ′
i∆vi] = 0 for i = 1, 2, . . . , N (2.4)

where∆vi = (∆vi3,∆vi4, . . . ., ∆viT )′.
In general, the asymptotically efficient GMM estimator based on this set of

moment conditions minimises the criterion

JN =

(
1
N

N∑
i=1

∆v′
iZi

)
WN

(
1
N

N∑
i=1

Z ′
i∆vi

)
(2.5)

using the weight matrix

WN =

[
1
N

N∑
i=1

(
Z ′

i∆̂vi∆̂v
′
iZi

)]−1

,

where the∆̂vi are consistent estimates of the first-differenced residuals obtained
from a preliminary consistent estimator. Hence this is known as a two-step GMM
estimator. Under homoskedasticity of thevit disturbances, the particular structure

11 This 2SLS estimator is also consistent in largeT panels, although as we have seen the Within
Groups estimator is also consistent in this context.
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of the first-differenced model implies that an asymptotically equivalent GMM es-
timator can be obtained in one-step, using instead the weight matrix

W1N =

[
1
N

N∑
i=1

(Z ′
iHZi)

]−1

,

whereH is a (T − 2) square matrix with 2’s on the main diagonal, -1’s on the
first off-diagonals and zeros elsewhere. Notice thatW1N does not depend on any
estimated parameters.

At a minimum this suggests that the one-step estimator usingW1N is a reason-
able choice for the initial consistent estimator used to compute the optimal weight
matrixWN and hence to compute the two-step estimator. In fact a lot of applied
work using theseGMMestimators has focused on results for the one-step estimator
rather than the two-step estimator. This is partly because simulation studies have
suggested very modest efficiency gains from using the two-step version, even in
the presence of considerable heteroskedasticity,12 but more importantly because
the dependence of the two-step weight matrix on estimated parameters makes the
usual asymptotic distribution approximations less reliable for the two-step estima-
tor. Simulation studies have shown that the asymptotic standard errors tend to be
much too small, or the asymptotic t-ratios much too big, for the two-step estimator,
in sample sizes where the equivalent tests based on the one-step estimator are quite
accurate.13 Windmeijer (2000) provides a formal analysis of this issue, and pro-
poses a finite-sample correction for the asymptotic variance of the two-step GMM
estimator which is potentially very useful in this class of models.

WhenT > 3 and the model is overidentified, the validity of the assumptions
used to obtain (2.4) can be tested using the standard GMM test of overidentifying
restrictions, or Sargan test. In particularNJN in (2.5) has anasymptoticχ2 distribu-
tion under the null that these moment conditions are valid (see Sargan, 1958, 1988;
Hansen, 1982). In this context the key identifying assumption that there is no serial
correlation in thevit disturbances can also be tested by testing for no second-order
serial correlation in the first-differenced residuals; see Arellano and Bond (1991).14

Bond and Windmeijer (2002) review alternative approaches to testing hypotheses
about the parameter of interestα.

These methods extend straightforwardly to higher order autoregressive models
and tomodelswith limitedmoving-averageserial correlation in thedisturbancesvit,
provided thataminimumnumberof timeseriesobservationsareavailable to identify
the parameters of interest. For example, ifvit is (2.1) is itselfMA(1), then the first-
differenced error term∆vit in (2.2) isMA(2). As a resultyi,t−2 would not be a
valid instrumental variable in these first-differencedequations, butyi,t−3 and longer
lags remain available as instruments. In this caseα is identified using this restricted

12 See, for example, Arellano and Bond (1991), Blundell and Bond (1998) and Blundell, Bond and
Windmeijer (2000).
13 See also Bond and Windmeijer (2002).
14 Negative first-order serial correlation is expected in the first-differenced residuals if thevit are
serially uncorrelated. Positive serial correlation is expected in the levels residuals due to the presence
of the individual effectsηi.
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instrument set providedT � 4. Extensions to models with additional explanatory
(x) variables are also straightforward, and are discussed briefly in the next section.
Moreover whilst we have introduced these GMM estimators for the case where
first-differencing is used to eliminate the individual effects, the two key properties
of the first-differencing transformation needed here - eliminating the time-invariant
individual effects whilst not introducing disturbances for periods earlier than period
t − 1 into the transformed error term - are shared by a wide class of alternative
transformations. Arellano and Bover (1995) show that numerically identical GMM
estimators can be obtained using any of the alternative transformations in this
class.15

The first-differenced GMM estimators described here are straightforward to
compute, as the moment conditions in (2.4) are all linear in the parameterα.16

Under the very mild assumption that the individual effectsηi and the disturbances
vit are uncorrelated, additional moment conditions are available for this model
which are quadratic inα and hence require iterative computational procedures.
Additional linear moment conditions are available under a homoskedasticity as-
sumption. Ahn and Schmidt (1995) characterise the additional moment conditions
in both these cases. Perhaps more useful in practice, however, are additional linear
moment conditions which result from assuming that the initial conditions satisfy
mean stationarity, so that the series(yi1, yi2, . . . , yiT ) have a constant meanηi

1−α
for each individuali. These are discussed in the next section, after we illustrate the
estimators discussed here for theAR(1) model using data on investment rates for
a panel of UK firms.

2.1 Example: company investment rates

Table 1 reports estimates of the simpleAR(1) specification for data on investment
rates for the panel of UK companies used in Bond, Klemm, Newton-Smith, Syed
and Vlieghe (2002). Since the investment data(Iit) measure gross investment ex-
penditures and the capital stock series(Kit) is a measure of the net capital stock
at replacement cost, the investment ratesyit = (Iit/Kit) give an approximate
measure of the growth rate in the net capital stock plus a depreciation rate. The
model estimated is a first-order autoregressive specification as in equation (2.1),
with year-specific intercepts(ct) included to account for common cyclical or trend
components in these investment rates(

Iit
Kit

)
= ct + α

(
Ii,t−1

Ki,t−1

)
+ (ηi + vit). (2.6)

Variation across firms in depreciation rates provides one motivation for suspecting
the presence of individual-specific effects in this context. The sample contains 703

15 The corresponding estimators are numerically identical when the panel is balanced (all individuals
have complete data onyit for t = 1, 2, . . . , T ) and all the available linear moment conditions are
exploited. Alternative transformations may lead to more or less efficient estimators when only a subset
of the available instruments are used.
16 Computer programmes that include these estimators includeDPD98 forGauss (Arellano andBond,
1998), Ox (www.oxmetrics.net), PcGive (www.pcgive.com) and Stata (www.stata.com).
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publicly tradedUKfirms forwhichwehave consecutive annual data frompublished
companyaccounts for aminimumof 4 years between1987and2000. Further details
of the sample and the data are provided in Bond et al. (2002).

The first two columns of Table 1 report OLS levels andWithinGroups estimates
of the parameterα, together with heteroskedasticity-consistent estimates of the
asymptotic standard errors.17 Recall that the OLS estimate is likely to be biased
upwards and the Within Groups estimate is likely to be biased downwards if the
AR(1) model in (2.6) provides a good representation for this series. Certainly the
OLS estimate is considerably higher than the Within Groups estimate. The serial
correlation testsm1 andm2 reported for OLS levels test the null hypotheses of
no first-order serial correlation and no second-order serial correlation respectively
in the OLS residualsyit − α̂yi,t−1, whereα̂ is the OLS estimate ofα. The test
statistics are asymptotically standard normal under the null of no serial correlation,
and their signs indicate the sign of the estimated autocorrelation coefficients in the
residuals.18 Whilst we might expect to find significant positive serial correlation at
both first order and second order in consistent estimates of these levels residuals,
due to the presence of individual effects, there is no reason to expect this pattern
if the OLS estimate ofα, and hence these estimates of the residuals, are seriously
biased. For the Within Groups estimator, the reported test statistics consider serial
correlation in the first-differenced residuals,∆yit − α̂∆yi,t−1, whereα̂ is here the
Within Groups estimate ofα. Similarly, however, the finding of significant second-
order serial correlation in these estimates of the residuals need not indicate that the
AR(1) model is mis-specified, since this estimate ofα and hence these estimates
of the first-differenced residuals are likely to be biased.

The third column reports the simple, just-identified 2SLS estimator for the
equations in first-differences, usingyi,t−2 as the instrumental variable. This gives
anestimate ofαwhich is significantly positive, butwell below theOLSestimate and
well above theWithin Groups estimate.Whilst we cannot use the Sargan statistic to
test the validity of overidentifying restrictions for this just-identified estimator, the
pattern of serial correlation in the first-differenced residuals is consistent with the
maintained assumption that thevit disturbances are serially uncorrelated, so that
∆vit should have significant negative first-order serial correlation but no significant
second-order serial correlation. We have some evidence that theAR(1)model is
well specified for this series, and the ranking of the OLS, 2SLS andWithin Groups
parameter estimates is in line with what we would expect if this is the caseand the
consistent 2SLS estimator is not subject to any serious finite sample bias in this
context.

The fourth column reports a one-step first-differenced GMM estimator for this
specification, using only a subset of the potentially available instrument matrix
Zi in (2.3). In particular, only instruments corresponding toyi,t−2 andyi,t−3 are
used here, and columns ofZi containing longer lags for the later first-differenced

17 All computations are done using DPD98 for Gauss; see Arellano and Bond (1998).
18 These test statistics are standardised first-order and second-order residual autocovariances; see
Arellano and Bond (1991) for details.



150 S.R. Bond

equations are omitted.19 We obtain a modest improvement in the precision of the
parameter estimate from the addition of these additional moment conditions. As
this model is now overidentified, we can use the Sargan statistic to test the validity
of the overidentifying restrictions. In this case we obtain aχ2(22) statistic of 23.84,
giving the reported p-value of 0.36.20 Consistent with the evidence from the serial
correlation tests, the null hypothesis that thesemoment conditions are invalid is not
rejected at any conventional significance level.

The final column reports the one-step first-differenced GMM estimator which
uses the complete set of linear moment restrictions implied by our assumptions that
thevit disturbances are serially uncorrelated and the initial conditionsyi1 are pre-
determined.21We obtain a further very modest improvement in the precision of the
parameter estimate, and again there is no evidence either from the serial correlation
tests or from the Sargan test that the simpleAR(1)model is mis-specified for this
series.22 Noteworthy is what happens in this case if we consider the two-step ver-
sion of the GMM estimator. This gives an estimate of 0.1806, with an asymptotic
standard error of 0.0227. Whilst the point estimate is thus similar to the one-step
estimate of 0.1560 reported in the final column of Table 1, there is apparently a
reduction of some 30% in the standard error of this estimate. Whilst some gain
in precision could be expected in the presence of heteroskedastic disturbances,
no improvement of this magnitude has ever been reported in simulation studies
for these estimators. Using the finite sample correction proposed by Windmeijer
(2000) gives a corrected standard error of 0.0314 for this two-step estimate, which
is only marginally lower than the standard error for the one-step estimate reported
in Table 1, and much more in line with the relative efficiency of these two estima-
tors reported in simulations. Several studies have noted that inference based on the
conventional asymptotic variance matrix for the two-step GMM estimator can be
highly inaccurate in this context; see, for example, Bond and Windmeijer (2002).

19 Notice however that this estimator still uses many more instrumental variables than the just-
identified 2SLS estimator in column three. The instrument matrix for 2SLS here is the single column
vectorZi = (yi1, yi2, . . . , yi,T−2)′, whilst even the restricted version of (2.3) used in column four
has 23 columns.
20 The Sargan test reported here is based on the minimised value of the associated two-step GMM
estimator, which has a convenient asymptoticχ2 distribution regardless of heteroskedasticity. Notice
that these one-step and two-step GMM estimators are based on the same set of moment conditions, so
that the overidentifying restrictions tested here are those used by both estimators.
21 The instrument matrixZi has 78 columns in this case.
22 One reason to compare the estimator based on the full set of instruments in column five with the
estimator based on the restricted instrument set in column four is that GMM estimators based on too
many moment conditions can be subject to potentially severe overfitting biases in small samples. This
does not seem to be an issue here. The loss of relevant information caused by omitting the more distant
lags as instruments will often be very modest, as we find here. Bowsher (2000) also notes that the power
of the Sargan test to detect invalid overidentifying restrictions can decline dramatically in finite samples
if an excessive number of moment conditions are used.
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Table 1.Alternative estimates of theAR(1) specification for company investment rates

Dependent variable:(I/K)t

OLS Within 2SLS GMM GMM

levels groups DIF DIF DIF

(I/K)t−1 0.2669 −0.0094 0.1626 0.1593 0.1560

(.0185) (.0181) (.0362) (.0327) (.0318)

m1 −4.71 −11.36 −10.56 −10.91 −11.12
m2 2.52 −2.02 0.61 0.52 0.46

Sargan .36 .43

Instruments (I/K)t−2 (I/K)t−2 (I/K)t−2

(I/K)t−3 (I/K)t−3

:

(I/K)1

Sample: 703 firms; 4966 observations; 1988–2000
Notes:Year dummies included in all models.
Asymptotic standard errors in parentheses.
m1 and m2 are tests for first-order and second-order serial correlation,
asymptotically N(0,1). These test the levels residuals for OLS levels,
and the first-differenced residuals in all other columns.
GMM results are one-step estimates with heteroskedasticity-consistent
standard errors and test statistics.
Sargan is a test of the overidentifying restrictions for the GMM estimators,
asymptoticallyχ2. P-value is reported. This test uses the minimised value of
the corresponding two-step GMM estimators.
All computations done using DPD98 for Gauss; see Arellano and Bond (1998).

3 Multivariate dynamic models with persistent series

3.1 Autoregressive-distributed lag models

The GMM estimators for autoregressive models outlined in the previous section
extend in a natural way to autoregressive-distributed lag models of the form

yit = αyi,t−1 + βxit + (ηi + vit); i = 1, 2, . . . , N ; t = 2, 3, . . . , T (3.1)

wherexit can be a vector of current and lagged values of additional explanatory
variables. An attractive feature of this approach is that it does not require models
for thexit series to be specified in order to estimate the parameters(α, β).

Different moment conditions will be available depending on what is assumed
about the correlation betweenxit and the two components of the error term. For
example, focusing on the case wherexit is scalar, we first assume thatxit is cor-
related with the individual effectsηi. The potential to obtain consistent parameter
estimates in the presence of this kind of unobserved heterogeneity is another major
advantage of panel data. As bothxit andyit are correlated withηi in this case, a
transformation like first-differencing is again required to eliminate the individual
effects from the transformed equations in order to obtain valid moment conditions.
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Maintainingalso that thevit disturbancesare serially uncorrelated, thexit series
may be endogenous in the sense thatxit is correlatedwithvit and earlier shocks, but
xit is uncorrelated withvi,t+1 and subsequent shocks; predetermined in the sense
thatxit andvit are also uncorrelated, butxit may still be correlated withvi,t−1 and
earlier shocks; or strictly exogenous in the sense thatxit is uncorrelated with all
past, present and future realisations ofvis. If xit is assumed to be endogenous then
it is treated symmetrically with the dependent variableyit. In this case the lagged
valuesxi,t−2, xi,t−3 and longer lags (when observed) will be valid instrumental
variables in the first-differenced equations for periodst = 3, 4, . . . , T . Maintaining
also that the initial conditionsyi1 are predetermined, the complete set of moment
conditions available has the form of (2.4), in which the vector(yi1, . . . , yi,t−2)
is replaced by the vector(yi1, . . . , yi,t−2, xi1, . . . , xi,t−2) in forming each row of
the instrument matrixZi in (2.3). Computation of the one-step and two-step first-
differenced GMM estimators can then proceed just as in the autoregressive case.

If we make the stronger assumption that there is no contemporaneous correla-
tion and thexit series is predetermined, thenxi,t−1 is additionally available as a
valid instrument in the first-differenced equation for periodt. In this case(yi1, . . . ,
yi,t−2) is replaced by the vector(yi1, . . . , yi,t−2, xi1, . . . , xi,t−2, xi,t−1) to form
the instrument matrixZi as in (2.3). If we make the much stronger assumption that
xit is strictly exogenous, then the complete time seriesx′

i = (xi1, xi2, . . . , xiT )
will be valid instrumental variables in each of the first-differenced equations. In
this case(yi1, . . . , yi,t−2) is replaced by the vector(yi1, . . . , yi,t−2, x

′
i) to form

the instrument matrix.
Whilst the choice between these alternatives may seem a little arbitrary, in

most cases these moment conditions will be overidentifying restrictions, so that
the validity of a particular assumption may be tested using standard GMM tests of
overidentifying restrictions. Difference Sargan tests are useful in this context, as
the set of moment conditions specified under a relatively weak assumption (e.g.xit

is endogenous) is a strict subset of the set of moment conditions specified under
a stronger assumption (e.g.xit is predetermined). LettingS denote the Sargan
statistic obtained under the stronger assumption andS′ denote the Sargan statistic
obtained under the weaker assumption, the simple differenceDS = S − S′ is
asymptoticallyχ2, and tests the validity of the additional moment conditions used
in the former case; see Arellano and Bond (1991).

Further moment conditions are available if we are willing to assume thatxit is
uncorrelated with the unobserved individual effectsηi. The basic difference is that
now we have valid instrumental variables for the untransformed levels equations.
Unfortunately the complete set of moment conditions specified typically cannot be
written as a set of orthogonality conditions using the error term in the levels equa-
tions(ηi + vit) alone. Efficient estimation combines the set of moment conditions
available for the first-differenced equations, described above, with the additional
moment conditions implied for the levels equations under the additional assumption
thatxit andηi are uncorrelated.
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For example, ifxit is endogenous with respect tovit and uncorrelated withηi,
there are a furtherT − 1 non-redundant additional moment conditions of the form

E [xi,t−1(ηi + vit)] = 0 for i = 1, 2, . . . , N andt = 2, 3, . . . , T,

in addition to the set of moment conditions for the first-differenced equations de-
scribed previously.23 This allows the use ofxi,t−1 as an instrumental variable in
the levels equation for periodt. If xit is either predetermined or strictly exogenous
with respect tovit, there are an additionalT non-redundant moment conditions,
given the respective sets of moment conditions for the first-differenced equations
under these assumptions. In both cases these can be written as24

E [xit(ηi + vit)] = 0 for i = 1, 2, . . . , N andt = 2, 3, . . . , T
andE [xi1(ηi + vi2)] = 0 for i = 1, 2, . . . , N ;

see Arellano and Bond (1991) for details.
Estimation then combines the set of moment conditions specified for the equa-

tions in first-differences with these additional moment conditions specified for the
equations in levels. One difference from the case where only first-differenced equa-
tions are used is that there is no longer a known weight matrix that can be used
to construct a one-step GMM estimator that is asymptotically equivalent to the
optimal two-step GMM estimator, even in the special case of homoskedastic dis-
turbances. The gain in efficiency from using the optimal two-step weight matrix is
thus likely to be greater in this context, at least in large samples. Note also that the
Difference Sargan test can be used to test the assumption thatxit is uncorrelated
with the individual effects.25

An intermediate case occurs when we are not willing to assume that the level
of thexit variable is uncorrelated with the individual effects, but we are willing to
assume that the first-differences∆xit are uncorrelated withηi. In this case suitably
lagged values of∆xis can be used as instrumental variables in the levels equation
for periodt; see Arellano and Bover (1995) for details.

3.2 Persistent series

This last observation raises the possibility that lagged differences∆yi,t−1may also
be valid instruments for the levels equations in autoregressive models like (2.1).
This turns out to depend on the validity of a stationarity assumption about the
initial conditionsyi1, which is discussed in detail in Blundell and Bond (1998).

Specifically it requiresE
[(
yi1 −

(
ηi

1−α

))
ηi

]
= 0 for i = 1, . . . , N, so that

the initial conditions do not deviate systematically from the value
(

ηi

1−α

)
which

23 This representation is not unique. Note that the use of longer lags ofxis as instruments for the
equations in levels is redundant when all available lags ofxis are used as instruments in the first-
differenced equations.
24 Again this representation is not unique.
25 Arellano (1993) considers an alternative Wald test of this assumption.
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the model specifies that theyit series for individuali converges towards from
period2 onwards.26 This stationary mean assumption impliesE [∆yi2ηi] = 0 for
i = 1, 2, . . . , N , which in turn given the autoregressive structure of the model
and the mild assumptionE [∆vitηi] = 0 for i = 1, 2, . . . , N andt = 3, 4, . . . , T
implies the additionalT − 2 non-redundant linear moment conditions

E [∆yi,t−1(ηi + vit)] = 0 for i = 1, 2, . . . , N andt = 3, 4, . . . , T, (3.2)

in addition to those specified for the first-differenced equations in (2.4). Estimation
again requires a combination of equations in first-differences with equations in
levels to exploit this complete set of moment conditions. One further observation is
that under theseadditional assumptions, the quadraticmoment conditions discussed
earlier can also be shown to be redundant when the linear moment conditions (2.4)
and (3.2) are all exploited.27

The significance of these additional moment conditions in theAR(1)model is
that estimation no longer depends exclusively on the first-differenced equations, or
more specifically on the use of lagged levels of the series as instruments for the first-
difference∆yi,t−1. The correlation between lagged levels of the series and∆yi,t−1
becomes weak if either the true value of the parameterα approaches unity, or if
the ratio var(ηi)/var(vit) becomes large. In both cases the time seriesyit becomes
highly persistent and lagged levels provide weak instruments for subsequent first-
differences. Indeed if we consider the alternative specification

yit = αyi,t−1 + (ηi(1 − α) + vit); i = 1, 2, . . . , N ; t = 2, 3, . . . , T,

which approaches a pure random walk asα → 1, then the parameterα is not
identified using the moment conditions for the first-differenced equations (2.4) in
the case whenα = 1.

More generally the instruments available for the equations in first-differences
are likely to be weak when the individual series have near unit root properties. In-
strumental variable estimators can be subject to serious finite sample biases when
the instruments used are weak.28 Blundell and Bond (1998) show that this applies
to the first-differenced GMM estimator for theAR(1) model.29 Table 2 reports a
selection of their simulation results, for both the first-differenced GMM estimator
and the extended GMM estimator which uses the additional moment conditions
(3.2). The Within Groups estimator is added here for comparison. Notice that the
finite sample bias for the first-differenced GMM estimator in this context is down-
wards, and in this experiment where the moment conditions (2.4) are valid but only

26 In a specification with period-specific intercepts or time dummies, the requirement that themean of
the(yi1, yi2, . . . , yiT ) series isconstantfor each individual can be replaced by the weaker assumption
that these means evolve over time in acommonway for theN individuals in the sample - so that the
means are again constant when the series are expressed as deviations from period-specific means.
27 Further moment conditions are available if thevit disturbances are homoskedastic and the initial
conditionsyi1 satisfy covariance stationarity. See, for example, Ahn and Schmidt (1997) and Kruiniger
(2000).
28 See, for example, Bound, Jaeger and Baker (1995) and Staiger and Stock (1997) .
29 Blundell, Bond andWindmeijer (2000) suggest that this is also likely to be a concern inmultivariate
models when the individual series are highly persistent.
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Table 2.Simulation results for theAR(1) model

Within GMM GMM

N α groups DIF system

100 0.5 −0.0370 0.4641 0.5100

(.0697) (.2674) (.1330)

0.8 0.1343 0.4844 0.8101

(.0726) (.8224) (.1618)

0.9 0.1906 0.2264 0.9405

(.0725) (.8264) (.1564)

500 0.5 −0.0360 0.4887 0.5021

(.0310) (.1172) (.0632)

0.8 0.1364 0.7386 0.7939

(.0328) (.3085) (.0779)

0.9 0.1930 0.5978 0.9043

(.0330) (.6407) (.0999)

Notes:The table reports means (standard devia-
tions) from experiments withT = 4 and 1000
replications. The model isyit = αyi,t−1 +
(ηi + vit), with var(ηi) = var(vit) = 1 and
initial conditions drawn from the covariance sta-
tionary distribution foryi1. Results are reported
for two-step GMM estimators.

Source: Blundell and Bond (1998) and author’s
calculations.

weakly identify the parameterα, this finite sample bias appears to be in the direc-
tion of the Within Groups estimator. By contrast the extended estimator, denoted
system GMM, has much smaller finite sample bias and much greater precision
when estimating autoregressive parameters using persistent series.

This emphasis on the time series properties of the seriesmight appear surprising
given our focus on micro panels, with a large number of cross-section units and
a small number of time periods. In this context the asymptotic distribution theory
relies onN becoming large withT treated as fixed, and the asymptotic normality of
these GMM estimators does not depend on the time series properties of the series.
The issue here is that parametersmay not be identified using first-differencedGMM
estimatorswhen the series are randomwalks, andmore generally identificationmay
be weak when the series are near unit root processes. As Table 2 illustrates, finite
sample biases can be severe when the instruments available are weak. Investigating
the time series properties of the individual series is therefore to be recommended
when using these GMM estimators for dynamic panel data models, and the validity
of theadditionalmoment conditionsdiscussed in this sectionshouldbegivencareful
consideration if the series being used are found to be highly persistent. An example
which illustrates these issues is presented in the next section.
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The extended systemGMM estimator also extends straightforwardly to autore-
gressive-distributed lagmodels like (3.1). In this context Blundell and Bond (2000)
show that a sufficient condition for the validity of additional moment conditions
like (3.2) is that the(yit, xit) series each satisfy a mean stationarity assumption.
However weaker conditions can also suffice. For example, within our sample the
first-differences∆yit can be expressed as

∆yit = αt−2∆yi2 +
t−3∑
s=0

αsβ∆xi,t−s +
t−3∑
s=0

αs∆vi,t−s

for i = 1, 2, . . . , N andt = 3, 4, . . . , T .

Thus ifα < 1 and the same model has generated theyit series for sufficiently long
prior to our sample period for any influence of thetrue initial conditions to have
become negligible, then orthogonality between∆yit andηi would be implied if all
the∆xit series are also uncorrelated with the individual effects. Again it should be
noted that the validity of theseadditionalmoment conditions for the levels equations
can be tested, for example using Difference Sargan tests.

3.3 Example: production function

We illustrate the use of GMM estimators which exploit these additional moment
restrictions for the equations in levels in a multivariate context by considering
the dynamic production function specification estimated in Blundell and Bond
(2000).30A nice feature of this example is that it illustrateswhy adopting a dynamic
econometric specification may sometimes be necessary for identifying parameters
of interest, even when the dynamics themselves are not the principal focus of
attention.

Blundell and Bond (2000) consider the Cobb-Douglas production function

yit = βnnit + βkkit + γt + (ηi + vit +mit) (3.3)

vit = αvi,t−1 + eit |α| < 1
eit,mit ∼ MA(0)

whereyit is log sales of firmi in yeart,nit is log employment,kit is log capital stock
andγt is a year-specific intercept reflecting, for example, a common technology
shock. Of the error components,ηi is an unobserved time-invariant firm-specific
effect,vit is a possibly autoregressive (productivity) shock andmit reflects serially
uncorrelated (measurement) errors. Constant returns to scale would implyβn +
βk = 1, but this is not necessarily imposed.

Interest is in the consistent estimation of the parameters(βn, βk, α) when the
number of firms(N) is large and the number of years(T ) is fixed. It is assumed that
both employment(nit) and capital(kit) are potentially correlated with the firm-
specific effects(ηi), and with both productivity shocks(eit) and measurement
errors(mit).

30 The discussion in this section draws heavily on that in Blundell and Bond (2000) and that in
Blundell, Bond and Windmeijer (2000).
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In this case there are no valid moment conditions for the static specification
(3.3) if the disturbancesvit are indeed autoregressive (α �= 0). However this model
has a dynamic (common factor) representation

yit = βnnit − αβnni,t−1 + βkkit − αβkki,t−1 + αyi,t−1 (3.4)

+(γt − αγt−1) + (ηi(1 − α) + eit +mit − αmi,t−1)

or

yit = π1nit + π2ni,t−1 + π3kit + π4ki,t−1 + π5yi,t−1 + γ∗
t + (η∗

i +wit) (3.5)

subject to two non-linear (common factor) restrictionsπ2 = −π1π5 andπ4 =
−π3π5. Whilst the error term(vit + mit) in (3.3) is serially correlated at all lag
lengths, the error termwit is serially uncorrelated if there are no measurement
errors (wit = eit with var (mit) = 0), or wit ∼ MA(1) if there are transient
measurement errors in some of the series. In either case we can obtain consistent
estimates of the unrestricted parameter vectorπ = (π1, π2, π3, π4, π5) using the
GMM methods outlined in the previous sections. Given consistent estimates of
π andvar(π), the common factor restrictions can be (tested and) imposed using
minimum distance to obtain consistent estimates of the restricted parameter vector
(βn, βk, α).

Blundell and Bond (2000) consider the time series properties of these series and
report estimates of this production function using a balanced panel of 509 R&D-
performing USmanufacturing companies observed for 8 years, 1982-89, similar to
that used in Mairesse and Hall (1996). Capital stock and employment are measured
at the end of the firm’s accounting year, and sales is used as a proxy for output.
Further details of the data construction can be found in Mairesse and Hall (1996).

Table 3 reports simpleAR(1) specifications for the three series, employment
(nit), capital(kit) and sales(yit). All three series are found to be highly persistent,
although even usingOLS levels estimates none appears to have an exact unit root.31

For the employment series, both differenced and system GMM estimators suggest
an autoregressive coefficient around 0.9, and differenced GMM does not appear
to be seriously biased. However for capital and sales, whilst system GMM again
suggests an autoregressive coefficient around 0.9, the differenced GMM estimates
are found to be significantly lower, and close to the corresponding Within Groups
estimates. These downward biases in differenced GMM estimates of theAR(1)
models for capital and sales are consistent with the finite sample biases expected
in the case of highly persistent series, illustrated in Table 2. Indeed the surprise
is that differenced GMM gives reasonable results for the employment series. One
difference is that the variance of the firm-specific effects is found to be lower,
relative to the variance of transitory shocks, for the employment series. The ratio of
these variances is around 1.2 for employment, but 2.2 for capital and 1.7 for sales.

Table 4 presents results for the basic production function, not imposing con-
stant returns to scale, for a range of estimators. Results are reported for both the
unrestricted model (3.5) and the restricted model (3.3), where the common factor

31 See Bond, Nauges and Windmeijer (2002) and Hall and Mairesse (2001) for further discussion of
unit root tests in this context.
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Table 3.AR(1) specifications for the production series

Labour (nt) OLS Within GMM-DIF GMM-SYS GMM-SYS

levels groups t − 3 t − 3 t − 4

nt−1 0.986 0.723 0.920 0.923

(.002) (.022) (.062) (.033)

m1 4.16 −8.51 −7.62 −8.99
m2 2.67 0.60 0.44 0.43

Sargan .040 .056

Dif-Sar .387

Capital (kt)

kt−1 0.987 0.733 0.768 0.925

(.002) (.027) (.070) (.021)

m1 7.72 −6.82 −5.80 −6.51
m2 2.29 −1.73 −1.73 −1.81
Sargan .563 .627

Dif-Sar .562

Sales (yt)

yt−1 0.988 0.693 0.775 0.963 0.893

(.002) (.025) (.063) (.048) (.063)

m1 5.70 −7.35 −5.95 −7.15 −6.35
m2 0.97 −2.37 −2.46 −2.53 −2.63
Sargan .040 .025 .092

Dif-Sar .134

See notes to Table 1.
Dif-Sar is the Difference Sargan test. P-value is reported.

Source: Blundell and Bond (2000).

restrictions are tested and imposed usingminimumdistance. The results here are for
one-step GMM estimators, with heteroskedasticity-consistent asymptotic standard
errors reported.

As expected in the presence of firm-specific effects, OLS levels appears to give
an upwards-biased estimate of the coefficient on the lagged dependent variable,
whilst Within Groups appears to give a downwards-biased estimate of this coeffi-
cient. Note that even using OLS, the hypothesis thatα = 1 is rejected, and even
using Within Groups the hypothesis thatα = 0 is rejected. Although the pattern
of signs on current and lagged regressors in the unrestricted models are consistent
with theAR(1) error-component specification, the common factor restrictions are
rejected for both these estimators. They also reject constant returns to scale.32

32 The table reports p-values fromminimumdistance tests of the common factor restrictions andWald
tests of the constant returns to scale restrictions.
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Table 4.Production function estimates

OLS Within GMM DIF GMM DIF GMM SYS GMM SYS

levels groups t − 2 t − 3 t − 2 t − 3

nt 0.479 0.488 0.513 0.499 0.629 0.472

(0.029) (0.030) (0.089) (0.101) (0.106) (0.112)

nt−1 −0.423 −0.023 0.073 −0.147 −0.092 −0.278
(0.031) (0.034) (0.093) (0.113) (0.108) (0.120)

kt 0.235 0.177 0.132 0.194 0.361 0.398

(0.035) (0.034) (0.118) (0.154) (0.129) (0.152)

kt−1 −0.212 −0.131 −0.207 −0.105 −0.326 −0.209
(0.035) (0.025) (0.095) (0.110) (0.104) (0.119)

yt−1 0.922 0.404 0.326 0.426 0.462 0.602

(0.011) (0.029) (0.052) (0.079) (0.051) (0.098)

m1 −2.60 −8.89 −6.21 −4.84 −8.14 −6.53
m2 −2.06 −1.09 −1.36 −0.69 −0.59 −0.35
Sargan − − .001 .073 .000 .032

Dif-Sar − − − − .001 .102

βn 0.538 0.488 0.583 0.515 0.773 0.479

(0.025) (0.030) (0.085) (0.099) (0.093) (0.098)

βk 0.266 0.199 0.062 0.225 0.231 0.492

(0.032) (0.033) (0.079) (0.126) (0.075) (0.074)

α 0.964 0.512 0.377 0.448 0.509 0.565

(0.006) (0.022) (0.049) (0.073) (0.048) (0.078)

Comfac .000 .000 .014 .711 .012 .772

CRS .000 .000 .000 .006 .922 .641

See notes to Tables 1 and 3.
Comfac is a minimum distance test of the non-linear common factor restrictions imposed in the
restricted models. P-values are reported.
CRS is a Wald test of the constant returns to scale hypothesisβn + βk = 1 in the restricted
models. P-values are reported.

Source: Blundell and Bond (2000).

The validity of lagged levels datedt− 2 as instruments in the first-differenced
equations is clearly rejected by the Sargan test of overidentifying restrictions.33

This is consistent with the presence of measurement errors. Instruments datedt−3
(and earlier) are not rejected, and the test of common factor restrictions is easily
passed in these first-differenced GMM results. However the estimated coefficient
on the lagged dependent variable is barely higher than theWithin Groups estimate,
suggesting the possibility of serious finite sample bias here. Indeed the differenced
GMM parameter estimates are all very close to the Within Groups results. Serious

33 Again the Sargan tests reported here are based on the minimised values of the associated two-step
GMM estimators.
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finite sample bias associated with weak instruments may well be suspected in this
context, given the time series properties of these series discussed above. The esti-
mate ofβk is low and statistically weak, and the constant returns to scale restriction
is rejected.

The validity of lagged levels datedt − 3 (and earlier) as instruments in the
first-differenced equations, combined with lagged first-differences datedt − 2 as
instruments in the levels equations, appears to bemarginal in the systemGMMesti-
mator. However the Difference Sargan statistic that specifically tests the additional
moment conditions used in the levels equations accepts their validity at the 10%
level. ThesystemGMMparameter estimatesappear to be reasonable. Theestimated
coefficient on the lagged dependent variable is higher than the Within Groups esti-
mate, but well below the OLS levels estimate. The common factor restrictions are
easily accepted, and the estimate ofβk is both higher and better determined than
the differenced GMM estimate. The constant returns to scale restriction is easily
accepted in the system GMM results.

Blundell and Bond (2000) explore this data in more detail and conclude that the
system GMM estimates in the final column of Table 4 are their preferred results.
They also report that when constant returns to scale is imposed on the production
function - it is not rejected in the preferred system GMM results - then the results
obtained using the first-differenced GMM estimator become more similar to the
system GMM estimates.

4 Summary and conclusions

This paper has reviewed the use of Generalised Method of Moments estimators
in the context of single equation, autoregressive-distributed lag models estimated
from micro panels with a large number of cross-section units observed for a small
number of time periods. These methods are particularly useful when the model
of interest contains endogenous or predetermined explanatory variables, but the
processes generating these series are not completely specified.

These GMM estimators can be used to obtain consistent parameter estimates in
a wide range of microeconometric applications. However we have emphasised that
they may be subject to large finite sample biases when the instruments available
are weak, and this is particularly likely to be a problem when using the basic first-
differenced estimatorswith series that are highly persistent. Careful investigation of
the time series properties of the individual series, and comparison of the consistent
GMM estimators to simpler estimators like OLS levels and Within Groups, which
are likely to be biased in opposite directions in the context of coefficients on lagged
dependent variables in shortT panels, can help in detecting and avoiding these
biases in applied research.
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